Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The auxin receptor TIR1 homolog (PagFBL 1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus.

Identifieur interne : 000683 ( Main/Exploration ); précédent : 000682; suivant : 000684

The auxin receptor TIR1 homolog (PagFBL 1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus.

Auteurs : Wenbo Shu [République populaire de Chine] ; Houjun Zhou [République populaire de Chine] ; Cheng Jiang [République populaire de Chine] ; Shutang Zhao [République populaire de Chine] ; Liuqiang Wang [République populaire de Chine] ; Quanzi Li [République populaire de Chine] ; Zhangqi Yang [République populaire de Chine] ; Andrew Groover [États-Unis] ; Meng-Zhu Lu [République populaire de Chine]

Source :

RBID : pubmed:29949229

Descripteurs français

English descriptors

Abstract

Adventitious roots occur naturally in many species and can also be induced from explants of some tree species including Populus, providing an important means of clonal propagation. Auxin has been identified as playing a crucial role in adventitious root formation, but the associated molecular regulatory mechanisms need to be elucidated. In this study, we examined the role of PagFBL1, the hybrid poplar (Populus alba × P. glandulosa clone 84K) homolog of Arabidopsis auxin receptor TIR1, in adventitious root formation in poplar. Similar to the distribution pattern of auxin during initiation of adventitious roots, PagFBL1 expression was concentrated in the cambium and secondary phloem in stems during adventitious root induction and initiation phases, but decreased in emerging adventitious root primordia. Overexpressing PagFBL1 stimulated adventitious root formation and increased root biomass, while knock-down of PagFBL1 transcript levels delayed adventitious root formation and decreased root biomass. Transcriptome analyses of PagFBL1 overexpressing lines indicated that an extensive remodelling of gene expression was stimulated by auxin signalling pathway during early adventitious root formation. In addition, PagIAA28 was identified as downstream targets of PagFBL1. We propose that the PagFBL1-PagIAA28 module promotes adventitious rooting and could be targeted to improve Populus propagation by cuttings.

DOI: 10.1111/pbi.12980
PubMed: 29949229
PubMed Central: PMC6335065


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The auxin receptor TIR1 homolog (PagFBL 1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus.</title>
<author>
<name sortKey="Shu, Wenbo" sort="Shu, Wenbo" uniqKey="Shu W" first="Wenbo" last="Shu">Wenbo Shu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Guangxi Academy of Forestry, Nanning, Guangxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Guangxi Academy of Forestry, Nanning, Guangxi</wicri:regionArea>
<wicri:noRegion>Guangxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Houjun" sort="Zhou, Houjun" uniqKey="Zhou H" first="Houjun" last="Zhou">Houjun Zhou</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Cheng" sort="Jiang, Cheng" uniqKey="Jiang C" first="Cheng" last="Jiang">Cheng Jiang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Shutang" sort="Zhao, Shutang" uniqKey="Zhao S" first="Shutang" last="Zhao">Shutang Zhao</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Liuqiang" sort="Wang, Liuqiang" uniqKey="Wang L" first="Liuqiang" last="Wang">Liuqiang Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Quanzi" sort="Li, Quanzi" uniqKey="Li Q" first="Quanzi" last="Li">Quanzi Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Zhangqi" sort="Yang, Zhangqi" uniqKey="Yang Z" first="Zhangqi" last="Yang">Zhangqi Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Guangxi Academy of Forestry, Nanning, Guangxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Guangxi Academy of Forestry, Nanning, Guangxi</wicri:regionArea>
<wicri:noRegion>Guangxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Groover, Andrew" sort="Groover, Andrew" uniqKey="Groover A" first="Andrew" last="Groover">Andrew Groover</name>
<affiliation wicri:level="2">
<nlm:affiliation>US Forest Service, Pacific Southwest Research Station, Davis, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Forest Service, Pacific Southwest Research Station, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Meng Zhu" sort="Lu, Meng Zhu" uniqKey="Lu M" first="Meng-Zhu" last="Lu">Meng-Zhu Lu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:29949229</idno>
<idno type="pmid">29949229</idno>
<idno type="doi">10.1111/pbi.12980</idno>
<idno type="pmc">PMC6335065</idno>
<idno type="wicri:Area/Main/Corpus">000D68</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D68</idno>
<idno type="wicri:Area/Main/Curation">000D68</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D68</idno>
<idno type="wicri:Area/Main/Exploration">000D68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The auxin receptor TIR1 homolog (PagFBL 1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus.</title>
<author>
<name sortKey="Shu, Wenbo" sort="Shu, Wenbo" uniqKey="Shu W" first="Wenbo" last="Shu">Wenbo Shu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Guangxi Academy of Forestry, Nanning, Guangxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Guangxi Academy of Forestry, Nanning, Guangxi</wicri:regionArea>
<wicri:noRegion>Guangxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Houjun" sort="Zhou, Houjun" uniqKey="Zhou H" first="Houjun" last="Zhou">Houjun Zhou</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Cheng" sort="Jiang, Cheng" uniqKey="Jiang C" first="Cheng" last="Jiang">Cheng Jiang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Shutang" sort="Zhao, Shutang" uniqKey="Zhao S" first="Shutang" last="Zhao">Shutang Zhao</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Liuqiang" sort="Wang, Liuqiang" uniqKey="Wang L" first="Liuqiang" last="Wang">Liuqiang Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Quanzi" sort="Li, Quanzi" uniqKey="Li Q" first="Quanzi" last="Li">Quanzi Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Zhangqi" sort="Yang, Zhangqi" uniqKey="Yang Z" first="Zhangqi" last="Yang">Zhangqi Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Guangxi Academy of Forestry, Nanning, Guangxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Guangxi Academy of Forestry, Nanning, Guangxi</wicri:regionArea>
<wicri:noRegion>Guangxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Groover, Andrew" sort="Groover, Andrew" uniqKey="Groover A" first="Andrew" last="Groover">Andrew Groover</name>
<affiliation wicri:level="2">
<nlm:affiliation>US Forest Service, Pacific Southwest Research Station, Davis, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Forest Service, Pacific Southwest Research Station, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Meng Zhu" sort="Lu, Meng Zhu" uniqKey="Lu M" first="Meng-Zhu" last="Lu">Meng-Zhu Lu</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant biotechnology journal</title>
<idno type="eISSN">1467-7652</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis Proteins (genetics)</term>
<term>Biomass (MeSH)</term>
<term>F-Box Proteins (genetics)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Indoleacetic Acids (metabolism)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (physiology)</term>
<term>Receptors, Cell Surface (genetics)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides indolacétiques (métabolisme)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Biomasse (MeSH)</term>
<term>Facteur de croissance végétal (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Protéines F-box (génétique)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Récepteurs de surface cellulaire (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>F-Box Proteins</term>
<term>Plant Proteins</term>
<term>Receptors, Cell Surface</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Indoleacetic Acids</term>
<term>Plant Growth Regulators</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Protéines F-box</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
<term>Récepteurs de surface cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides indolacétiques</term>
<term>Facteur de croissance végétal</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Biomasse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Adventitious roots occur naturally in many species and can also be induced from explants of some tree species including Populus, providing an important means of clonal propagation. Auxin has been identified as playing a crucial role in adventitious root formation, but the associated molecular regulatory mechanisms need to be elucidated. In this study, we examined the role of PagFBL1, the hybrid poplar (Populus alba × P. glandulosa clone 84K) homolog of Arabidopsis auxin receptor TIR1, in adventitious root formation in poplar. Similar to the distribution pattern of auxin during initiation of adventitious roots, PagFBL1 expression was concentrated in the cambium and secondary phloem in stems during adventitious root induction and initiation phases, but decreased in emerging adventitious root primordia. Overexpressing PagFBL1 stimulated adventitious root formation and increased root biomass, while knock-down of PagFBL1 transcript levels delayed adventitious root formation and decreased root biomass. Transcriptome analyses of PagFBL1 overexpressing lines indicated that an extensive remodelling of gene expression was stimulated by auxin signalling pathway during early adventitious root formation. In addition, PagIAA28 was identified as downstream targets of PagFBL1. We propose that the PagFBL1-PagIAA28 module promotes adventitious rooting and could be targeted to improve Populus propagation by cuttings.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29949229</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>06</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1467-7652</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2019</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>Plant biotechnology journal</Title>
<ISOAbbreviation>Plant Biotechnol J</ISOAbbreviation>
</Journal>
<ArticleTitle>The auxin receptor TIR1 homolog (PagFBL 1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>338-349</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pbi.12980</ELocationID>
<Abstract>
<AbstractText>Adventitious roots occur naturally in many species and can also be induced from explants of some tree species including Populus, providing an important means of clonal propagation. Auxin has been identified as playing a crucial role in adventitious root formation, but the associated molecular regulatory mechanisms need to be elucidated. In this study, we examined the role of PagFBL1, the hybrid poplar (Populus alba × P. glandulosa clone 84K) homolog of Arabidopsis auxin receptor TIR1, in adventitious root formation in poplar. Similar to the distribution pattern of auxin during initiation of adventitious roots, PagFBL1 expression was concentrated in the cambium and secondary phloem in stems during adventitious root induction and initiation phases, but decreased in emerging adventitious root primordia. Overexpressing PagFBL1 stimulated adventitious root formation and increased root biomass, while knock-down of PagFBL1 transcript levels delayed adventitious root formation and decreased root biomass. Transcriptome analyses of PagFBL1 overexpressing lines indicated that an extensive remodelling of gene expression was stimulated by auxin signalling pathway during early adventitious root formation. In addition, PagIAA28 was identified as downstream targets of PagFBL1. We propose that the PagFBL1-PagIAA28 module promotes adventitious rooting and could be targeted to improve Populus propagation by cuttings.</AbstractText>
<CopyrightInformation>© 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shu</LastName>
<ForeName>Wenbo</ForeName>
<Initials>W</Initials>
<Identifier Source="ORCID">0000-0002-2897-7986</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Guangxi Academy of Forestry, Nanning, Guangxi, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Houjun</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Cheng</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Shutang</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Liuqiang</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Quanzi</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Zhangqi</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Guangxi Academy of Forestry, Nanning, Guangxi, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Groover</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>US Forest Service, Pacific Southwest Research Station, Davis, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Meng-Zhu</ForeName>
<Initials>MZ</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>SRP101893</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>201504101</GrantID>
<Agency>Special Fund for Forest Scientific Research in the Public Welfare</Agency>
<Country>International</Country>
</Grant>
<Grant>
<Agency>Chinese Academy of Forestry, China</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>07</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant Biotechnol J</MedlineTA>
<NlmUniqueID>101201889</NlmUniqueID>
<ISSNLinking>1467-7644</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D044783">F-Box Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011956">Receptors, Cell Surface</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C501405">TIR1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044783" MajorTopicYN="N">F-Box Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011956" MajorTopicYN="N">Receptors, Cell Surface</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">PagFBL1 </Keyword>
<Keyword MajorTopicYN="Y">PagIAA28 </Keyword>
<Keyword MajorTopicYN="Y">adventitious root development</Keyword>
<Keyword MajorTopicYN="Y">auxin signalling</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>01</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29949229</ArticleId>
<ArticleId IdType="doi">10.1111/pbi.12980</ArticleId>
<ArticleId IdType="pmc">PMC6335065</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Oct;9(5):448-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16877027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2012;63:563-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22404466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Sep 10;6:719</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26442033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 May 25;7:718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27252731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):759-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(10):R106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20979621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jun;24(6):2515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22730403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 Sep;238(3):499-517</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23765266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1994 Nov;100(1-2):94-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Feb 26;457(7233):1150-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19182776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Oct;27:22-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26048079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Nov;68(4):597-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21831209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 19;8:1059</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28674551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2014 Jun;151(2):192-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24666319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Jan 1;68(3):539-552</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28007950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Apr;17(4):181-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22406007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 May;153(1):34-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20219832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Mar;13(3):465-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11251090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2009;43:265-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19686081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):349-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Oct;239:155-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26398800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Mar;67(7):2107-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26672615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Nov;74(4-5):367-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20803312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 Apr 15;171(7):486-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24655384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Feb;176(2):1709-1727</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29233938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Oct;21:51-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25032902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 May;74(3):473-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23384057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 May;78(3):372-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24547703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Jan;27(1):9-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25604443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Jan 4;69(2):155-167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28992266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2012 Apr 01;8(5):477-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22466420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2013;959:159-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23299674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Sep 26;5:494</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25400641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Jul 15;10(7):e0132969</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26177103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2016 Mar 16;16:66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26983547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Feb;170(2):603-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26697895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2008 Mar;1(2):321-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jan;61(1):3-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19793078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Apr;158(4):1976-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22323776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2015 Mar;1(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26236497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 30;9(6):e100997</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24978694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Oct;27(10):1459-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17669736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 May 26;435(7041):446-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 May 15;5:9729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25978548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Mar;5(3):281-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20037469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2014 May;151(1):83-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24547793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2013 Dec;11(9):1092-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23941360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Aug;64(11):3411-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23918971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Aug;18(8):459-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23727199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Dec;160(4):1996-2006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23077242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Res. 2016 Jun 24;15(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27420958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 May 26;435(7041):441-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007 Nov 06;7:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(4):2019-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17487191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Dec 30;14:354</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25547982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 May 14;4:133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23717317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Sep 29;5:495</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25324849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Oct 12;20(19):1697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20888232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 Nov;112(7):1395-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24061489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Apr 21;15:296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24750781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2015 Jun;115(7):1155-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25888593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Jun;17(6):326-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22401844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2017 Nov 1;58(11):1891-1900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29016933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Dec;172(4):2363-2373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27784768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2017 Jul 26;17(1):129</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28747176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Oct 14;16:789</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26467528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2015 Apr;28(2):353-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25702099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2014;65:639-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24555710</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Shu, Wenbo" sort="Shu, Wenbo" uniqKey="Shu W" first="Wenbo" last="Shu">Wenbo Shu</name>
</noRegion>
<name sortKey="Jiang, Cheng" sort="Jiang, Cheng" uniqKey="Jiang C" first="Cheng" last="Jiang">Cheng Jiang</name>
<name sortKey="Li, Quanzi" sort="Li, Quanzi" uniqKey="Li Q" first="Quanzi" last="Li">Quanzi Li</name>
<name sortKey="Lu, Meng Zhu" sort="Lu, Meng Zhu" uniqKey="Lu M" first="Meng-Zhu" last="Lu">Meng-Zhu Lu</name>
<name sortKey="Shu, Wenbo" sort="Shu, Wenbo" uniqKey="Shu W" first="Wenbo" last="Shu">Wenbo Shu</name>
<name sortKey="Wang, Liuqiang" sort="Wang, Liuqiang" uniqKey="Wang L" first="Liuqiang" last="Wang">Liuqiang Wang</name>
<name sortKey="Yang, Zhangqi" sort="Yang, Zhangqi" uniqKey="Yang Z" first="Zhangqi" last="Yang">Zhangqi Yang</name>
<name sortKey="Zhao, Shutang" sort="Zhao, Shutang" uniqKey="Zhao S" first="Shutang" last="Zhao">Shutang Zhao</name>
<name sortKey="Zhou, Houjun" sort="Zhou, Houjun" uniqKey="Zhou H" first="Houjun" last="Zhou">Houjun Zhou</name>
</country>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Groover, Andrew" sort="Groover, Andrew" uniqKey="Groover A" first="Andrew" last="Groover">Andrew Groover</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000683 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000683 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29949229
   |texte=   The auxin receptor TIR1 homolog (PagFBL 1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29949229" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020